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Recent Research at a glance

I work in a branch of mathematics known as Algebraic Topology . The objects of study are
geometrical “shapes” which can exist in an arbitrary number of dimensions. They are known
by various terms including: spaces, manifolds, orbifolds and varieties .

Though in general, these objects can’t be visualized, mathematicians associate to them
concrete algebraic structures known as cohomology rings . By manipulating the algebra,
information is gleaned about similarities and differences among the shapes

The algebra is understood best in cases where the recipe by which a space is made is
controlled carefully. The Cartesian product is a relatively simple way of making complicated
spaces from simpler ones. The case of a line interval I is illustrative. The Cartesian product
I × I is square and the threefold Cartesian product I × I × I is a cube.

I × I × I =

Here, by the simple construction of taking Cartesian products, a more geometrically rich
space is made from a much simpler one.

Combinatorics allows for the introduction of further complexity into a Cartesian product.
This is done by means of a combinatorial object known as a simplicial complex . Our purpose
is to recognize certain spaces as part of a Cartesian product. In the example above, a
threefold product, we consider simplicial complexes on three vertices, consisting of vertices,
edges and triangles.

We think of the simplicial complex on the right, (the whole filled-in triangle), as encoding
mathematically the full cube.
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The part of the triangle drawn below on the left, consisting of an edge E and an isolated
vertex V , encodes a part of the cube which looks like the four-poster bed shown in the
diagram below.

The precise manner in which a simplicial complex encodes part of a Cartesian product is
somewhat involved. Roughly, the recipe is such that the edge E specifies the rectangles, top
and bottom, and the single vertex V specifies the four “posts”.

Notice that this object is part of the surface of the original cube, and from a topological
point of view, its geometrical structure is more sophisticated than that of the original cube.

In a certain sense, the edge E and vertex V , comprise a combinatorial “polyhedron”. For
this reason, the part of the original Cartesian product determined by them, (the four-poster
bed shape above), is called a polyhedral product .

The salient point here is that the algebra which gives information about the space which
has been constructed, (the four-poster bed in this simple case), is computable in terms of
the combinatorial information encoded in E and V . This becomes quite important when the
space which is constructed is in large dimension.

A little more formally . . .

A polyhedral product Z(K; (X,A)) is a topological space determined by an abstract sim-
plicial complex K on m vertices and a family of (based) CW pairs

(X,A) = {(X1, A1), (X2, A2), . . . , (Xm, Am)}.

It is defined as a certain colimit, (union), of Cartesian products inside
m∏
i=1

Xi, each parame-

terized by a simplex in K. In the case that K itself is a simplex,

Z(K; (X,A)) =
m∏
i=1

Xi.

The examples in the pictures above correspond to the case (Xi, Ai) = (D1, S0).

Polyhedral products arose within the subject of toric topology, a topological approach to
toric geometry, which had its genesis is a paper of Davis and Januszkiewicz. The basic spaces
which arise were reformulated by Buchstaber and Panov into moment–angle complexes which
correspond now to the case (Xi, Ai) = (D2, S1).
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In recent years, an extensive literature has developed as the framework of polyhedral
products has found broad application throughout mathematics. Without being recognized
as such, polyhedral products do have a history within homotopy theory but the current
upsurge in activity is a direct consequence of the invention of moment–angle complexes.

This table lists a selection of current applications:

(X,A) Z(K; (X,A))

(D2, S1) toric geometry and topology
(D1, S0) surfaces, number theory, represention theory
(S1, S1

+) robotics, arachnid mechanisms
(S1, ∗) right–angle Artin groups
(RP∞, ∗) right–angle Coxeter groups
(C,C∗) complements of coordinate arrangements
(Rn, (Rn)∗) complements of certain non-coordinate arrangements
(CP∞,CPk) monomial ideal rings
(EG,G) free groups
(BG, ∗) monodromy, combinatorics, representation theory
(PX,ΩX) homotopy theory
(S2k+1, ∗) graph products, quadratic algebras

With my colleagues, I study the homotopy theory of polyhedral products and their ap-
plication in toric topology/geometry. Lately, we’ve been thinking about the cohomology of
orbifolds, and in particular, toric orbifolds.


