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RECENT RESEARCH AT A GLANCE

I work in a branch of mathematics known as Algebraic Topology. The objects of study are
geometrical “shapes” which can exist in an arbitrary number of dimensions. They are known
by various terms including: spaces, manifolds, orbifolds and varieties.

Though in general, these objects can’t be visualized, mathematicians associate to them
concrete algebraic structures known as cohomology rings. By manipulating the algebra,
information is gleaned about similarities and differences among the shapes

The algebra is understood best in cases where the recipe by which a space is made is
controlled carefully. The Cartesian product is a relatively simple way of making complicated
spaces from simpler ones. The case of a line interval [ is illustrative. The Cartesian product
I x I is square and the threefold Cartesian product I x I x [ is a cube.
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Here, by the simple construction of taking Cartesian products, a more geometrically rich
space is made from a much simpler one.

Combinatorics allows for the introduction of further complexity into a Cartesian product.
This is done by means of a combinatorial object known as a simplicial complex. Our purpose
is to recognize certain spaces as part of a Cartesian product. In the example above, a
threefold product, we consider simplicial complexes on three vertices, consisting of vertices,
edges and triangles.

%4

We think of the simplicial complex on the right, (the whole filled-in triangle), as encoding
mathematically the full cube.
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The part of the triangle drawn below on the left, consisting of an edge E' and an isolated
vertex V', encodes a part of the cube which looks like the four-poster bed shown in the
diagram below.
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The precise manner in which a simplicial complex encodes part of a Cartesian product is
somewhat involved. Roughly, the recipe is such that the edge E specifies the rectangles, top
and bottom, and the single vertex Vspecifies the four “posts”.

Notice that this object is part of the surface of the original cube, and from a topological
point of view, its geometrical structure is more sophisticated than that of the original cube.

In a certain sense, the edge E and vertex V', comprise a combinatorial “polyhedron”. For
this reason, the part of the original Cartesian product determined by them, (the four-poster
bed shape above), is called a polyhedral product.

The salient point here is that the algebra which gives information about the space which
has been constructed, (the four-poster bed in this simple case), is computable in terms of
the combinatorial information encoded in £ and V. This becomes quite important when the
space which is constructed is in large dimension.

A little more formally. ..

A polyhedral product Z(K; (X, A)) is a topological space determined by an abstract sim-
plicial complex K on m vertices and a family of (based) CW pairs
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It is defined as a certain colimit, (union), of Cartesian products inside [] X;, each parame-
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terized by a simplex in K. In the case that K itself is a simplex,

Z(K; (X, A)) = ﬁX

The examples in the pictures above correspond to the case (X;, 4;) = (D%, S°).

Polyhedral products arose within the subject of toric topology, a topological approach to
toric geometry, which had its genesis is a paper of Davis and Januszkiewicz. The basic spaces
which arise were reformulated by Buchstaber and Panov into moment—angle complexes which
correspond now to the case (X;, A;) = (D?, S1).
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In recent years, an extensive literature has developed as the framework of polyhedral
products has found broad application throughout mathematics. Without being recognized
as such, polyhedral products do have a history within homotopy theory but the current
upsurge in activity is a direct consequence of the invention of moment—angle complexes.

This table lists a selection of current applications:

(X,A) Z(K;(X,A))

(D%, SY) toric geometry and topology

(D', 5%) surfaces, number theory, represention theory

(S, Sh) robotics, arachnid mechanisms

(St %) right—angle Artin groups

(RP°, %) right—angle Coxeter groups

(C,C*) complements of coordinate arrangements

(R™, (R™)*) complements of certain non-coordinate arrangements
(CP*>,CP*)  monomial ideal rings

(EG,G) free groups

(BG, %) monodromy, combinatorics, representation theory
(PX,QX) homotopy theory

(S%FL %) graph products, quadratic algebras

With my colleagues, I study the homotopy theory of polyhedral products and their ap-
plication in toric topology/geometry. Lately, we've been thinking about the cohomology of
orbifolds, and in particular, toric orbifolds.



